
A. Appendix
A.1. Proof of inevitability of reward hacking

Consider an arbitrary reward function r(x) that is sufficiently smooth. Consider a non-parametric probability distribution
p(x) which maximizes the expected reward:

p∗ = argmaxEx∼p(x) [r(x)] (15)

with the constraint
∫
x
p(x)dx = 1. This is written as a maximization problem with Langrange multiplier β

max
p

∫
x

p(x)r(x)dx− β

((∫
x

p(x)dx
)
− 1

)
(16)

=

∫
x

p(x) [r(x)− β] dx+ β (17)

=

∫
x

L(x, p, ṗ)dx+ β (18)

This is an Euler-Langrage equation where L(x, p, ṗ) = p(x)(r(x)− β). The maximizer of this equation is given by:

∂L

∂p
− d

dt

[
∂L

∂ṗ

]
= 0 (19)

Since the second term in Eq. (19) is zero, we get

∂L

∂p
= r(x)− β = 0 (20)

Note that β should be a constant, for a general r(x) Eq. (20) will not hold true. However, note that p(x) ≥ 0∀x. Therefore,
if r(x) < β, then p(x) = 0 and if r(x) > β, then p(x) will grow indefinitely, violating the pdf constraint

∫
x
p(x)dx = 1.

However, β should be chosen such that r(x) ≤ β∀x. However, if r(x) < β∀x, then p(x) = ∀x. Therefore, β is chosen to be
β = sup r(x), leading to the optimal distribution

p∗(x) = δ(x− x∗) (21)

where x∗ = argmax r(x). If r has multiple maxima with the same maximum value, say {x∗
1, x

∗
2 . . . x

∗
n}, r(x∗

i ) = sup r(x),
then there exists a family of optimal distributions:

p∗(x) =
∑
i

wiδ(x− x∗
i ) (22)

such that
∑

i wi = 1. We assume that r is not ‘flat’ at this maximum value, therefore p∗(x) lacks diversity.

For a conditional distribution p(x|c) maximizing the reward r(x, c), a similar derivation yields p(x|c) = δ(x − x∗rc),
where x∗rc = argmax r(x, c). This completes the proof in the non-parameteric case. Note that no assumption is made about
the finetuning algorithm (DPO, DRaFT, ReFL, etc.) or nature of the reward function (CLIP, JPEG compression, Aesthetics,
etc.). This proves that reward hacking is an artifact of the expected reward maximization problem formulation itself.

In the parameteric case, the optimal p∗(x) may not be achievable due to the parameterization. However, even with low-
dimensional parameter updates like LoRA, we notice a substantial loss of image diversity when training DRaFT. Qualitative
comparisons between the base, DRaFT and our regularization are shown in Figs. 13 to 16.

A.1.1 Adding dropout to reward functions does not work

Moreover, this explains why even reward functions in [12] with aggressive dropout rates (> 0.95) still led to reward collapse.
Let the reward model be parameterized by φ and let N = |φ| be the dimension of the reward model parameters. Under the
dropout case with dropout parameter ξ, the expected reward maximization formulation becomes:

p∗ = argmaxEx∼p(x),u∈U [0,1]N
[
rφ[u,ξ](x)

]
(23)

12



where u is sampled from an i.i.d. multidimensional uniform distribution over 0 to 1, i.e. u ∼ U [0, 1]N , and φ[u, ξ] are the
parameters after applying dropout with random variable u and dropout threshold ξ. Since x and u are independent, we can
simplify the expression Eq. (23) by expanding the expectation over u to obtain:

p∗ = argmaxEx∼p(x)

[
Eu

[
rφ[u,ξ](x)

]]
= argmaxEx∼p(x) [r̃ξ(x)] (24)

where
r̃ξ(x) = Eu∈U [0,1]N

[
rφ[u,ξ](x)

]
(25)

is independent of random variable u. This is the same optimization problem as Eq. (15) with a new reward function r̃ξ,
therefore having the same reward hacking problem.

A.2. More reward-diversity tradeoff analysis

We perform more ablations on the analysis shown in Sec. 4.3. Specifically, we train SDv1.4/SDXL on Pickscore/HPSv2
reward models and compare the reward-diversity tradeoffs for various regularizations (i.e. KL, LoRA scaling, AIG). Then,
we generate images from the PartiPrompt prompt dataset containing over 1600 prompts, and all four subsets of the HPSv2
prompt dataset (containing 800 prompts each from 4 categories). Additionally, images are generated from the coverage
prompts as mentioned in Sec. 4.1. Next, the training reward score is computed on the generated images on these prompt
datasets, and plotted against the diversity score from the coverage dataset. These quantitative reward-diversity tradeoffs are
shown in Figs. 17 to 20. AIG consistently attains better reward-diversity tradeoff than LoRA scaling and KL divergence on
both SDv1.4 and SDXL architectures trained on the Pickscore dataset. On the HPSv2 trained models, we observe a smaller
Pareto gap between the baseline and our method. Moreover, there is a trend reversal among the baselines. In the HPSv2
trained models, KL regularization seems to outperform LoRA scaling, but in the Pickscore trained models, LoRA scaling
tends to outperform KL regularization. This highlights the versatility and reliability of AIG as an effective regularization,
being less volatile to trend reversals.

CLIP-based image-text alignment We also compare CLIP [45] scores on the HPSv2 prompt data splits for all four
configurations. These results are shown in Figs. 21 to 24. Note that unlike the reward-diversity analysis, maximizing
Pickscore/HPSv2 rewards does not imply higher text-to-image alignment. This is evident from the DRaFT model con-
sistently underperforming the base model in terms of CLIP score. Consequently, the theoretical optimal is sometimes very
close to the base models and there is no CLIP-diversity tradeoff anymore. Therefore, we compare models only on the CLIP
score for a particular value of diversity metric (FID, Recall, Spectral Distance). However, we notice that different regular-
izations do not deviate in CLIP score for different values of regularization. We make two interesting observations comparing
AIG and LoRA scaling. First, AIG outperforms LoRA scaling overall (on PartiPrompts and 3/4 HPSv2 subsets) on all four
configurations (SDv1.4/SDXL trained on Pickscore/HPSv2), achieving a notably higher CLIP score. The difference is more
notable for the SDv1.4 variants, owing to the already high baseline image-text alignment of SDXL compared to SDv1.4. Sec-
ond, we qualitatively observe that reward model training produces images that are stylistically more cartoony. Consequently,
this leads to lower text-image alignment for HPSv2 photo prompts where the prompts mention the words ”photo” but the
generated images look more cartoony and dreamish. AIG preserves more characteristics of the DRaFT alignment, that leads
to a slightly lower CLIP score than LoRA scaling on this particular subset.

A.3. Qualitative Results

We present two qualitative comparisons.
Comparison with DRaFT. In this section, we show a few uncurated subsets of images generated by DRaFT and AIG,

similar to those shown in user studies in Figs. 13 to 16. Note that across network architectures and reward functions, AIG
consistently demonstrates high quality images compared to the base model, while much higher diversity than the DRaFT
model.

Comparison with other baselines. We consider three other baselines in this work:
DOODL [65]: This method aims to use Exact Diffusion Inversion to optimize the noise latent that produces an image to

maximize classifier guidance, by directly backpropagating through the pre-trained classier’s score on the generated image.
The classifier can be interpreted as a reward model, and the optimization is done at inference-time. However, this method
takes very long to produce results. For example, with its default configuration (50 optimization steps for 50 DDIM steps),
producing the images from the PartiPrompt prompt set will take ∼775 GPU hours, as opposed to < 30 minutes for our
method.
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ReNO [14]: This method is functionally similar to DOODL, except it works on one-step diffusion models. Given a one-
step diffusion model (distilled from a DDPM/DDIM model) Gθ(ϵ, c) that generates an image based on noise ϵ and (prompt)
conditioning c, and a reward function R, the ReNO objective is defined as

ϵ∗ = argmax
ϵ

R(Gθ(ϵ, c), c) (26)

Since both the one-step diffusion model G and reward function R are differentiable, Eq. (26) is solved using direct opti-
mization using gradient ascent techniques. Moreover, to prevent divergence from the initial data distribution, a regularization
based on the proximity of the noise ϵ to the normal distribution N (0, 1) is measured. In the paper, a χd regularization on the
norm of the noise is used.

ReFL [69]: Directly optimizing LDMs with a reward models is expensive due to its many sampling steps. However, [69]
observe that the the rewards of the images in the middle of the sampling chain are indicative of the final scores. Therefore,
the LDM chooses a model and a randomly chosen timestep in the middle of the sample chain, and computes gradient only
with respect to that step. This prevents an expensive gradient computation step for finetuning the LDM.

[12] already show that DRaFT performs quantitatively better than these baselines; we focus on qualitative differences. For
all methods, we use their default recommended configurations. We qualitatively evaluate all models by generating images
from the PartiPrompt dataset. Qualitative comparison is shown in Figs. 11 and 12.

A.4. User Study
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Figure 7. User study results aggregated by DM+reward configuration User preferences are consistent across models and reward
functions, confirming that the user preference towards our method is due to the AIG itself and is not due to any specific architecture or
reward model.

In this section, we provide more details on the user preference study. The objective of the user study is to quantify if
the proposed method: AIG leads to increased diversity at the cost of any loss of quality or alignment. To this end, we use
the ‘coverage prompt’ dataset, which is a subset of 40 prompts from the PartiPrompt prompt dataset. For each prompt, 50
images are generated for all methods with the same noise latents for consistency. These images are generated for all four
configurations - SDv1.4 and SDXL models that are trained on Pickscore and HPSv2 rewards. The web UI assigns a unique
user ID to a browser session, and randomly chooses a prompt, DM+reward configuration, and selects 9 random indices from
the 50 generated images without replacement, randomly shuffles the order, and displays the images side by side (Fig. 10). We
recruit 36 participants and provide them basic app usage instructions prior to conducting the study, and we collect more than
1500 total votes from all users. Users are referenced by browser cookie information, allowing us to preserve user anonymity
while collecting user-specific voting statistics. Both overall voting results, and results aggregated by configurations are
summarized and discussed in Sec. 4.4.

User-normalized preference However, our user study allows the users to cast a different number of votes as per their
convenience. This leads to a slight non-uniformity in the distribution of votes (Fig. 8b), which can skew the preference
scores towards users who cast more votes. To highlight this potential discrepancy between overall vote distribution and user-
normalized vote distribution, we compute re-normalized preference scores as follows. Instead of counting votes towards a
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particular baseline (DRaFT, AIG or Equal) followed by normalization, we normalize the number of votes of each individual
user to sum to a 100. Next, we aggregate these normalized votes for each user. Essentially, we calculate the average preference
of users irrespective of the total number of votes cast by each user. These results are shown in Fig. 8. Interestingly, the trends
do not drastically shift from that in Figs. 6 and 7, showing that user agreeability on preferences is high. If users disagreed on
preferences, then the unweighted and reweighted preference statistics may have been different.

(a) User study with normalized vote counts for all users. Our method (AIG) demon-
strates exceptional diversity and quality while preserving alignment even when all users are
re-weighted to have equal contribution in votes.
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(b) Voting statistics. The distribution of votes of all users
who participated in the study. Few users voted dispropor-
tionately more than others, potentially skewing the user study
results (in Figs. 6 and 7).
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(c) User study results aggregated by DM+reward configuration with normalized votes User preferences are consistent across models and reward
functions, indicating the improvement is due to the AIG itself. Images best viewed zoomed in.

Figure 8. User Study comparing AIG with DRaFT with user-based reweighing of votes. We recruited 36 participants who compared
the quality, diversity and alignment of AIG and DRaFT, resulting in more than 1500 votes. In contrast to Fig. 6, this study reweighs each
user contribution to have the same number of votes, to avoid skewing the user study in favor of users who voted more than others (Fig. 8b).

A.5. Limitations and Future Work

Although our work aims to study regularization techniques that are inference-time, and mitigate the ‘reference mismatch’
problem, it does not completely eliminate it. For example, in AIG, the earlier sampling steps are dominated by the score
function of the base model, with the underlying assumption that each mode of the original data distribution has a ‘high-reward
region’ close to it. This assumption is usually true for stylistic changes (e.g. Pickscore or HPSv2 rewards that primarily
alter the style of the images) but may not necessarily hold for text-to-image alignment (e.g. changing spatial relationships,
counts or attributes of objects). This assumption is also similar to the motivation used in works like SDEdit [36], which
recover realistic images from a ‘partially noisy label’. Consequently, we observe a huge improvement in quality, but do not
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improve text-to-image alignment significantly. The lack of improvement of text-to-image alignment also raises questions
about the efficacy of reward models trained on human preference data themselves. Most reward models trained on large
human preference datasets achieve maximum validation accuracies of 65-70% [29, 68, 69], questioning the presence of any
discernable, objective learnable signal present in these images w.r.t. alignment. This forms the basis for future work by
using finegrained alignment using Large Multimodal Models (LMMs) to identify and correct mistakes in the image that do
not align with the prompt. Another line of future work pertains to the choice of γ. Since our choice of γ allows immense
flexibility of the interplay of the base and DRaFT sampling dynamics, a user interface can be built where users can choose
from a predetermined set of γ curves, followed by finetuning these curves using spline interpolation from points clicked on
by the user.

A.6. More intuition for Annealed Importance Guidance

A.6.1 Asymmetric Mixing Dynamics

Consider a data distribution composed of only a finite set of images µi ∈ Rd, i.e. pdata(x) =
∑N

i=1 wiδ(x−µi),
∑

i wi = 1.
The average distance between any two ‘modes’ of the distribution is mdata = Ei ̸=j

[
∥µi − µj∥2

]
. Now, consider the forward

diffusion xt =
√
α̃tx+ σtϵ, ϵ ∈ N (0, 1). The distribution is given by

qt(xt) =

∫
x0

q(xt|x0)pdata(x0)dx0 (27)

=

∫
x0

1√
2πσd

t

exp

(
−∥xt −

√
α̃tx0∥22

2σ2
t

)(∑
i

wiδ(x0 − µi)

)
dx0 (28)

qt(xt) =
1√
2πσd

t

∑
i

wi exp

(
−∥xt −

√
α̃tµi∥22

2σ2
t

)
(29)

Therefore, qt(xt) is a Gaussian Mixture Model (GMM) with means µ
(t)
i =

√
α̃tµi. The average distance between the

means is now m
(t)
data = Ei ̸=j

[
∥µ(t)

i − µ
(t)
j ∥2

]
=

√
α̃tEi̸=j

[
∥µi − µj∥2

]
=

√
α̃tmdata. The average distance between

any two modes decreases, as they collapse onto each other to form a unimodal Gaussian distribution. Two data modes are
therefore easy to tell apart from each other for small t instead of larger t. Therefore, the score matching objective must
be most discriminative in terms of mode recovery from the later stages, where samples from qt(xt) cannot be reliably
distinguished from each other in terms of the mode of the data distribution that they originated from. We demonstrate this
using a simple example.

Toy problem illustrating mode-recovering nature of sampling dynamics. Consider a toy example of a 1D Gaussian
Mixture distribution with two modes as data distribution, i.e. pdata(x) = 0.5(N (1, 0.05) + N (−1, 0.05)). We consider a
1000 forward diffusion steps for this problem. Top row in Fig. 9 shows samples from qt(xt) with the colors representing
the mode of the original pdata distribution from which the sample of qt is generated. As t increases, the samples mix with
each other and become less distinguishable. To show the mode recovering behavior, we sample one data point from qt(xt)
and plot the distribution of p(xt−10|xt) using Langevin dynamics with the ground-truth score function. The intuition is
that if p(xt−10|xt) is high variance, then the subsequent samples from p(xt−20|xt−10) will discover different modes, and
eventually the true data distribution. Middle row in Fig. 9 shows the samples from p(xt−10|xt) for different t, using the
ground-truth score function, and bottom row shows the samples from p(x0|xt). The most high variance behavior is shown
for larger values of t, and only a local finetuning to a particular mode of the data for smaller values of t. This motivates
our regularization for Annealed Importance Guidance. During the earlier stages of reverse stage sampling (high values of t)
when the mode-recovering behavior is the highest, we let the sampling dynamics be governed by the base model. This helps
in early recovery of multiple modes of the data. During the later stages (smaller t), the score function from DRaFT dominates
the convergence of these samples to the nearest high-reward samples.

A.7. Implementation Details

A.7.1 Training details

We initialize the model with learnable LoRA parameters in the UNet of the latent diffusion model, and keep all other compo-
nents (text encoders, VAE decoder, reward model) frozen. All models are trained on 8 NVIDIA H100 GPUs. We use a micro
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Figure 9. Toy example showing the sample distribution during forward and reverse time sampling for a 1D problem. Top row shows
that data modes tend to mix more with larger t, indicating that mode-recovery behavior must emerge during later timesteps. Middle and
bottom rows show that if a data is sampled from qt for higher t, then multiple modes of the data are covered from Langevin dynamics,
motivating the use of the base model to guide the initial phase of sampling from the reverse-time SDE, and using DRaFT for local finetuning.

batch size of 1 with 4 gradient accumulation steps. For each model, we generate images of the recommended resolution, i.e.
images with resolution 512×512 for SDv1.4 and images with resolution 1024×1024 for SDXL. For all models, a constant
learning rate of 2.5e-4 is used, without any warmup, annealing, decay or warm restarts. We use the AdamW optimizer for all
experiments with β1 = 0.9, β2 = 0.999, and a gradient clipping parameter of 0.1. To save memory, all models are trained
with BF16 mixed precision training, with DDP level parallelism.

A.7.2 Reward Models

The HPSv2 [68] model is trained on the Human Preference Dataset v2. HPDv2 is a large-scale dataset with 798k binary
preference choices for 434k images. Each pair contains two images generated by different models using the same prompt,
and is annotated with a binary choice made by one annotator. The prompts are collected from DrawBench and DiffusionDB
containing user-written prompts, the latter of which is ‘sanitized’ using ChatGPT to remove biases arising due to style words
and leads to a reduced NSFW score. The PickScore [29] model is trained on the Pick-a-Pic dataset. The Pick-a-Pic dataset
was created using a web application where users can write a prompt and are presented with two generated images, and they are
asked to select their preferred option or indicate a tie if they have no strong opinion about either image. Although moderation
is done to remove users who generate NSFW images or make judgements at a rapid pace (indicating low quality or random
preference), the Pick-a-Pic model contains a lot of NSFW prompts. Consequently, we observe more NSFW generated images
when finetuned with the Pickscore model compared to the HPSv2 model, even when prompts are not NSFW. However, the
Pickscore model also generates more aesthetically pleasing images.
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Figure 10. Minimalistic web app designed for user study. A web app built with Flask dynamically selects a prompt from the coverage
dataset, selects nine random indices from the 50 generated images without replacement, randomly shuffles the order, and displays the
images side by side. This is followed by three questions. Users click on either option and hit Submit. Upon hitting submit, the vote is
recorded and a new set of images are shown.

A.7.3 Choice of γ

Unless the KL parameter λ or LoRA scaling parameter α′ that are scalar quantities, AIG requires a function γ(t). In this
paper, we consider the family of functions

γp,T (t) = 1−
(
T − t

T

)p

For p = 1, the weighing is simply linear, i.e. γ1,T (t) =
t
T . For p > 1, the power term quickly vanishes and the sampling

dynamics are governed by the base model for more timesteps. For p < 1, the power term remains close to 1, therefore
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diminishing the effect of the base model in the earlier timesteps. We consider p = 1, 1.25, 1.5, 2, 3, 4, 5 for the ablations
in the paper, and p = 2 for the qualitative studies. However, we note that more sophisticated γ scheduling is possible, i.e.
γp,T (t) = H

(
t
T − p

)
, or γκ,T (t) = σ (κ(t− T/2)) where H is the Heaviside step function, and σ is the sigmoid function.

We leave exploration of these sophisticated scheduling functions to future work.

19



ReNO DOODL ReFL DRaFT Ours SDXL Base

Prompt: a wine bottle with a lit candle stuck in its spout

Prompt: the silhouette of the Milllenium Wheel at dusk

Prompt: a painting of a man standing under a tree

Prompt: a comic about a father and a son playing tennis

Prompt: a cartoon of a boy playing with a tiger

Prompt: a laptop screen showing a document being edited

Figure 11. Qualitative comparison of reward finetuning methods on PartiPrompt prompt dataset. Qualitatively, our model inherits
the large-scale details from the base model, inheriting its diversity, but generated images follow stylistic aspects of the DRaFT model.
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ReNO DOODL ReFL DRaFT Ours SDXL Base

Prompt: the Mona Lisa in the style of Minecraft

Prompt: a thumbnail image of a person skiing

Prompt: A high contrast portrait photo of a fluffy hamster wearing an orange beanie and sunglasses holding a sign that says
”Let’s PAINT!”

Prompt: a boat with ’BLUE GROOVE’ written on its hull

Prompt: a black towel with a cartoon of a dog on it

Prompt: the word ’mardefly’ on a coffee mug

Figure 12. Qualitative comparison of reward finetuning methods on PartiPrompt prompt dataset. Qualitatively, our model inherits
the large-scale details from the base model, inheriting its diversity, but generated images follow stylistic aspects of the DRaFT model.
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(a) DRaFT (b) Base model (c) Ours

Sunset over dark island, hd, dramatic lighting
filler

Giant caterpillar riding a bicycle
filler

Portrait of a gecko wearing a train conductor’s hat and holding a flag that has a yin-yang symbol on it. Charcoal.
filler

Figure 13. Qualitative comparison of DRaFT and AIG. Three columns of rows show set of nine images generated from the same seeds
by the (a)DRaFT, (b)Base model, and (c)Our model. Our method preserves the diversity of details of different images, while adding
aesthetic quality leading to both high rewards and high user preference.
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(a) DRaFT (b) Base model (c) Ours

Dungeons and Dragons full body portrait, half-orc Paladin in gleaming plate armor, male, light green skin, black ponytail
filler

Anthropomorphic dust devil made from dust and smoke
filler

Figure 14. Qualitative comparison of DRaFT and AIG. Three columns of rows show set of nine images generated from the same seeds
by the (a)DRaFT, (b)Base model, and (c)Our model. Our method preserves the diversity of details of different images, while adding
aesthetic quality leading to both high rewards and high user preference.
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(a) DRaFT (b) Base model (c) Ours

a woman in renaissance dress holding a cat of her own, in the style of contemporary realist portrait photography, dark beige
and black, uniformly staged images, baroque animals, contemporary realist portrait photography, baroque-inspired details,

painterly realist
filler

an image of a mad roman bishop inside iron maiden,cyborg, cyberpunk style,king crimson,by shusei nagaoka and simone
martini and josé clemente orozco

filler

a sad man with green hair
filler

Figure 15. Qualitative comparison of DRaFT and AIG. Three columns of rows show set of nine images generated from the same seeds
by the (a)DRaFT, (b)Base model, and (c)Our model. Our method preserves the diversity of details of different images, while adding
aesthetic quality leading to both high rewards and high user preference.
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(a) DRaFT (b) Base model (c) Ours

A steampunk octopus playing the drums on a beach
filler

an ostrich standing on a couch

Figure 16. Qualitative comparison of DRaFT and AIG. Three columns of rows show set of nine images generated from the same seeds
by the (a)DRaFT, (b)Base model, and (c)Our model. Our method preserves the diversity of details of different images, while adding
aesthetic quality leading to both high rewards and high user preference.
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Figure 17. Reward-diversity tradeoff for SDXL trained on PickScore: Green represents the base model, Red represents DRaFTwith
no regularization, Gold star represents the ideal score. Blue represents different models with different KL regularization coefficients λ,
Pink represents different amounts of LoRA scaling, and Orange represents different γ(t) for AIG. An ideal baseline would achieve the
highest reward (represented by DRaFT) as well as a complete match with the base distribution. For all measures for both PartiPrompt and
HPSv2 subset prompts, AIG achieves Pareto-optimality.
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Figure 18. Reward-diversity tradeoff for SDv1.4 trained on PickScore: Green represents the base model, Red represents DRaFTwith
no regularization, Gold star represents the ideal score. Blue represents different models with different KL regularization coefficients λ,
Pink represents different amounts of LoRA scaling, and Orange represents different γ(t) for AIG. An ideal baseline would achieve the
highest reward (represented by DRaFT) as well as a complete match with the base distribution. For all measures for both PartiPrompt and
HPSv2 subset prompts, AIG achieves Pareto-optimality.
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Figure 19. Reward-diversity tradeoff for SDXL trained on HPSv2: Green represents the base model, Red represents DRaFTwith no
regularization, Gold star represents the ideal score. Blue represents different models with different KL regularization coefficients λ, Pink
represents different amounts of LoRA scaling, and Orange represents different γ(t) for AIG. An ideal baseline would achieve the highest
reward (represented by DRaFT) as well as a complete match with the base distribution. For all measures for both PartiPrompt and HPSv2
subset prompts, AIG achieves Pareto-optimality.
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Figure 20. Reward-diversity tradeoff for SDv1.4 trained on HPSv2: Green represents the base model, Red represents DRaFTwith no
regularization, Gold star represents the ideal score. Blue represents different models with different KL regularization coefficients λ, Pink
represents different amounts of LoRA scaling, and Orange represents different γ(t) for AIG. An ideal baseline would achieve the highest
reward (represented by DRaFT) as well as a complete match with the base distribution. For all measures for both PartiPrompt and HPSv2
subset prompts, AIG achieves Pareto-optimality.
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Figure 21. CLIP-Diversity tradeoff for configurations on HPSv2 anime prompts: Green represents the base model, Red represents
DRaFT with no regularization, Gold star represents the ideal score. Blue represents different models with different KL regularization
coefficients λ, Pink represents different amounts of LoRA scaling, and Orange represents different γ(t) for AIG. AIG consistently
outperforms LoRA scaling in CLIP alignment.
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Figure 22. CLIP-Diversity tradeoff for configurations on HPSv2 concept art prompts: Green represents the base model, Red repre-
sents DRaFT with no regularization, Gold star represents the ideal score. Blue represents different models with different KL regularization
coefficients λ, Pink represents different amounts of LoRA scaling, and Orange represents different γ(t) for AIG. AIG consistently out-
performs LoRA scaling in CLIP alignment.
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Figure 23. CLIP-Diversity tradeoff for configurations on HPSv2 painting prompts: Green represents the base model, Red represents
DRaFT with no regularization, Gold star represents the ideal score. Blue represents different models with different KL regularization
coefficients λ, Pink represents different amounts of LoRA scaling, and Orange represents different γ(t) for AIG. AIG consistently
outperforms LoRA scaling in CLIP alignment.
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Figure 24. CLIP-Diversity tradeoff for configurations on HPSv2 photo prompts: Green represents the base model, Red represents
DRaFT with no regularization, Gold star represents the ideal score. Blue represents different models with different KL regularization
coefficients λ, Pink represents different amounts of LoRA scaling, and Orange represents different γ(t) for AIG. AIG underperforms
LoRA scaling in CLIP alignment.
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